Developing an efficient heartbeat monitoring system has become a focal point in numerous healthcare applications. Specifically, in the last few years, heartbeat classification for arrhythmia detection has gained considerable interest from researchers. This paper presents a novel deep representation learning method for the efficient detection of arrhythmic beats. To mitigate the issues associated with the imbalanced data distribution, a novel re-sampling strategy is introduced. Unlike the existing oversampling methods, the proposed technique transforms majority-class samples into minority-class samples with a novel translation loss function. This approach assists the model in learning a more generalized representation of crucially important minority class samples. Moreover, by exploiting an auxiliary feature, an augmented attention module is designed that focuses on the most relevant and target-specific information. We adopted an inter-patient classification paradigm to evaluate the proposed method. The experimental results of this study on the MIT-BIH arrhythmia database clearly indicate that the proposed model with augmented attention mechanism and over-sampling strategy significantly learns a balanced deep representation and improves the classification performance of vital heartbeats.
KSP Keywords
Attention mechanism, Classification Performance, Deep representation learning, ECG classification, Focal point, Generalized representation, Healthcare applications, Heartbeat monitoring, Imbalanced data distribution, Learning methods, MIT-BIH arrhythmia database
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.