최근 딥러닝 및 로봇기술의 발전으로 인해 대량의 데이터를 빠르게 수집하고 처리하는 연구 분야들로 확대되었다. 이와 관련된 한 가지 분야로써 다중 로봇을 이용한 분산학습 연구가 있으며, 이는 단일 에이전트를 이용할 때보다 대량의 데이터를 빠르게 수집 및 처리하는데 용이하다. 본 연구에서는 기존 Distributed Neural Network Optimization (DiNNO) 알고리즘에서 제안한 정적 분산 학습방법과 달리 단계적 분산학습 방법을 새롭게 제안하였으며, 모델 성능을 향상시키기 위해 원시 변수를 근사하는 단계수를 상수로 고정하는 기존의 방식에서 통신회차가 늘어남에 따라 점진적으로 근사 횟수를 높이는 방법을 고안하여 새로운 알고리즘을 제안하였다. 기존 알고리즘과 제안된 알고리즘의 정성 및 정량적 성능 평가를 수행하기 MNIST 분류와 2 차원 평면도 지도화 실험을 수행하였으며, 그 결과 제안된 알고리즘이 기존 DiNNO 알고리즘보다 동일한 통신회차에서 높은 정확도를 보임과 함께 전역 최적점으로 빠르게 수렴하는 것을 입증하였다.
KSP Keywords
Neural network optimization
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.