The emergence of convolutional neural networks (CNNs) has led to significant advancements in various computer vision tasks. Among them, stereo matching is one of the most popular research areas that enables the reconstruction of 3D information, which is difficult to obtain with only a monocular camera. However, CNNs have their limitations, particularly their susceptibility to domain shift. The CNN-based stereo matching networks suffered from performance degradation under domain changes. Moreover, obtaining a significant amount of real-world ground truth data is laborious and costly when compared to acquiring synthetic data. In this letter, we propose an end-to-end framework that utilizes image-to-image translation to overcome the domain gap in stereo matching. Specifically, we suggest a horizontal attentive generation (HAG) module that incorporates the epipolar constraints when generating target-stylized left-right views. By employing a horizontal attention mechanism during generation, our method can address the issues related to small receptive field by aggregating more information of each view without using the entire feature map. Therefore, our network can maintain consistencies between each view during image generation, making it more robust for different datasets.
KSP Keywords
3D information, Attention mechanism, Computer Vision(CV), Convolution neural network(CNN), End to End(E2E), Feature Map, Ground truth data, Image generation, Monocular Camera, Real-world, Receptive field
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.