This paper presents a compact multi-channel CMOS active multiplier in a single chip which output generates the three different signals from V-to G-band frequencies. A meandered marchand balun and active power divider enable to minimize the overall chip size and achieve the wideband operation. The active power divider provides a wideband gain response as well as a constant gain variation according to the different load impedances. Therefore, the chip can provide independent output sources from 52 to 252 GHz with a Ka-band input signal in 40-nm CMOS technology. The proposed chip has achieved maximum output power of 2 dBm with 3-dB bandwidth of about 20% (52~66 GHz and 106~132 GHz). The peak output power at 208~252GHz is -4 dBm and the 3-dB bandwidth is 32 GHz. The chip consumes 275 mW (all paths turn on) with an area of only 1.17 mm2 including bonding pads. This is the first demonstration of a multi-channel active multiplier operating up to G-band with a compact chip size.
KSP Keywords
3-dB bandwidth, 6 GHz, 7 mm, Active Power, CMOS Technology, Constant Gain, G-band, Gain variation, Ka-Band, Marchand Balun, Signal generation
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.