Object detection tasks represent one of the most prevalent areas of study in computer vision, leading to the introduction of numerous techniques. Among these, the You Only Look Once (YOLO) series of object detection models continued to evolve and progress. The latest iterations within the YOLO family exhibit enhanced performance and quicker inference times. However, the increased capacities and memory demands of these models present real-world challenges in terms of practical deployment. This underscores the importance of developing lightweight versions of the updated YOLO models to ensure their applicability in real-life scenarios. In this context, this study introduces YOLOv7 lightweight, building upon a prior channel pruning technique employed for YOLOv5. By adopting the foundational method to align with the YOLOv7 architecture, we effectively managed to reduce the model’s complexity. Furthermore, this research delves into identifying the appropriate pruning levels and model configurations tailored specifically for human detection tasks. In the course of our investigation, we evaluated the trade-off between performance degradation and reductions in parameters and computational complexity. This analysis led us to select a pruning protection ratio of 50% as the most optimal value. Moreover, this article presents the optimization of the lightweight YOLOv7 model for efficient human detection. In essence, our research not only suggests enhancements to existing methodologies for updated models but also emphasizes the practical application of such methods through a comprehensive grasp of the unique characteristics of updated models.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.