In this study, we present the development of a highly reliable 64 × 64 Mini‐LED display, where the LED array is transferred/bonded onto a glass substrate using SITRAB technology and materials. The display substrate was fabricated by patterning two layers of Cu on top of heat‐resistant glass with a thickness of 500 μm. We applied SITRAB solder paste containing type 6 solder powder based on a resin matrix to the display substrate using screen printing. Subsequently, we transferred and bonded the 64 × 64 color LED array using the SITRAB process. The pixel pitch is 450 μm, corresponding to a 78" 4K display. No bad pixels were found among a total of 12288 LEDs. We analyzed the shear strength and reliability test results of LED chips bonded using SITRAB materials and processes. By applying SITRAB materials, the shear strength of the LED chips was increased by 27% before and 45% after reliability testing compared to the chips without added resin.
KSP Keywords
Display module, Glass substrate, LED Array, LED display, Reliability testing, Resin matrix, Shear strength, Solder paste, highly reliable, screen printing, two layers
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.