Convolutional neural networks (CNNs) have enabled effective object detection tasks in bioimages. Unfortunately, implementing such an object detection model can be computationally intensive, especially on resource-limited hardware in a laboratory or hospital setting. This study aims to develop a framework called BioEdge that can accelerate object detection using Scaled-YOLOv4 and YOLOv7 by leveraging edge computing for bioimage analysis. BioEdge employs a distributed inference technique with Scaled-YOLOv4 and YOLOv7 to harness the computational resources of both a local computer and an edge server, enabling rapid detection of COVID-19 abnormalities in chest radiographs. By implementing distributed inference techniques, BioEdge addresses privacy concerns that can arise when transmitting biomedical data to an edge server. Additionally, it incorporates a computationally lightweight autoencoder at the split point to reduce data transmission overhead. For evaluation, this study utilizes the COVID-19 dataset provided by the Society for Imaging Informatics in Medicine (SIIM). BioEdge is shown to improve the inference latency of Scaled-YOLOv4 and YOLOv7 by up to 6.28 times with negligible accuracy loss compared to local computer execution in our evaluation setting.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.