This paper proposes a new clock offset estimation that mitigates unwanted link asymmetry for precise clock synchronization. The main contribution is to address the primary and traditional design issue of the IEEE 1588 standard precision time protocol (PTP), which estimates clock offset under the assumption that the delays of exchanged packets are symmetric. To mitigate the issue, we focus on the fact that PTP measures asymmetry variation through the derivatives of its timestamps with respect to the time step. By exploiting the measurement of the variation, the proposed approach defines the asymmetry in the form of a linear differential equation (LDE) and leverages the LDE to define and exclude asymmetry-induced errors. Additionally, we clearly derive the state transition of the asymmetry. Subsequently, we derive a novel state-space model from our approach. The model describes PTP clock offset estimation perfectly, allowing optimal clock offset estimation. We verify the theoretical validity of the proposed method with real data. Our approach improves PTP accuracy by more than thousand times and achieves an accuracy at the level of tens to hundreds of nanoseconds on an asymmetric communication link. Our approach realizes an accuracy comparable to that of PTPv2, without the cost of specialized hardware.
KSP Keywords
Asymmetric communication, Clock Synchronization, Clock offset, Communication link, Differential equation, IEEE 1588, Link asymmetry, Real data, State Transition, Time step, Traditional design
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.