Recently, LiDAR sensors have become indispensable in autonomous driving research. Despite continuous improvements in performance and price reductions, noise generated under adverse weather conditions remains a serious challenge. Most of the noise generated under such conditions is due to particles such as fog, rain, and snow. These particles are extremely fine; therefore, they have a very low reflectance compared to the targets that the laser should detect. In this study, we propose a method to distinguish particles by restoring the reflectance from LiDAR sensing data based on the reflectance characteristics of the particles. In addition, we propose a method to make additional judgments based on the geometrical shapes of adjacent particles to distinguish the particles more accurately. The proposed method is accurate enough to be compared to state-of-the-art deep learning methods. Moreover, the execution time is less than 2 ms on a single-core CPU, demonstrating a remarkable efficiency, being more than three times faster than that of methods performed on a GPU. Because noise removal is a preprocessing step, the proposed method is expected to allow more resources to be allocated to other, more important processes for autonomous driving.
KSP Keywords
Adverse Weather Conditions, Continuous Improvements, De-noising, Learning methods, LiDAR sensors, Noise Removal, Point clouds, Sensing data, autonomous driving, deep learning(DL), execution time
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.