With recent advancements in data technologies, particularly machine learning, research focusing on the enhancement of energy efficiency in residential, commercial, and industrial settings through the collection of load data, such as heat, electricity, and gas, has gained significant attention. Nevertheless, issues arising from hardware- or network-related problems can result in missing data, necessitating the development of management techniques to mitigate these challenges. Traditional methods for missing imputation face difficulties when operating in constrained environments characterized by short data collection periods and frequent consecutive missing. In this paper, we introduce the denoising masked autoencoder (DMAE) model as a solution to improve the handling of missing data, even in such restrictive settings. The proposed DMAE model capitalizes on the advantages of the denoising autoencoder (DAE), enabling effective learning of the missing imputation process, even with relatively small datasets, and the masked autoencoder (MAE), allowing for learning in environments with a high missing ratio. By integrating these strengths, the DMAE model achieves an enhanced performance in terms of missing imputation. The simulation results demonstrate that the proposed DMAE model outperforms the DAE or MAE significantly in a constrained environment where the duration of the training data is short, less than a year, and missing values occur frequently with durations ranging from 3 h to 12 h.
KSP Keywords
2 H, Data Collection, Electric load data, Energy efficiency, Enhanced performance, Management techniques, Missing data, Missing values, Traditional methods, denoising autoencoder, machine Learning
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.