Newly introduced vehicles come with various added functions, each time utilizing data from different sensors. One prominent related function is autonomous driving, which is performed in cooperation with multiple sensors. These sensors mainly include image sensors, depth sensors, and infrared detection technology for nighttime use, and they mostly generate data based on image processing methods. In this paper, we propose a model that utilizes a parallel transformer design to gradually reduce the size of input data in a manner similar to a stairway, allowing for the effective use of such data and efficient learning. In contrast to the conventional DETR, this model demonstrates its capability to be trained effectively with smaller datasets and achieves rapid convergence. When it comes to classification, it notably diminishes computational demands, scaling down by approximately 6.75 times in comparison to ViT-Base, all the while maintaining an accuracy margin of within ±3%. Additionally, even in cases where sensor positions may exhibit slight misalignment due to variations in data input for object detection, it manages to yield consistent results, unfazed by the differences in the field of view taken into consideration. The proposed model is named Stairwave and is characterized by a parallel structure that retains a staircase-like form.
KSP Keywords
Depth sensor, Detection technology, Efficient learning, Field of View(FoV), Image processing(IP), Infrared detection, Parallel structure, Processing Method, Proposed model, Rapid convergence, Recognition function
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.