British Machine Vision Conference (BMVC) 2023, pp.1-13
Publisher
BMVA
Language
English
Type
Conference Paper
Abstract
Anomaly detection is a critical and challenging task that aims to identify data points deviating from normal patterns and distributions within a dataset. Various methods have been proposed using a one-class-one-model approach, but these techniques often face practical problems such as memory inefficiency and the requirement of sufficient data for training. In particular, few-shot anomaly detection presents significant challenges in industrial applications, where limited samples are available before mass production. In this paper, we propose a few-shot anomaly detection method that integrates adversarial training loss to obtain more robust and generalized feature representations. We utilize the adversarial loss previously employed in domain adaptation to align feature distributions between source and target domains, to enhance feature robustness and generalization in few-shot anomaly detection tasks. We hypothesize that adversarial loss is effective when applied to features that should have similar characteristics, such as those from the same layer in a Siamese network’s parallel branches or input-output pairs of reconstructionbased methods. Experimental results demonstrate that the proposed method generally achieves better performance when utilizing the adversarial loss.
KSP Keywords
Adversarial Training, Detection Method, Feature representation, Robust feature, Siamese network, anomaly detection, domain adaptation, feature distribution, industrial applications, input and output, mass production
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.