Renewable energy sources are being expanded globally in response to global warming. Solar power generation is closely related to solar radiation and typically experiences significant fluctuations in solar radiation hours during periods of high solar radiation, leading to substantial inaccuracies in power generation predictions. In this paper, we suggest a solar power generation prediction method aimed at minimizing prediction errors during solar time. The proposed method comprises two stages. The first stage is the construction of the Solar Base Model by extracting characteristics from input variables. In the second stage, the prediction error period is detected using the Solar Change Point, which measures the difference between the predicted output from the Solar Base Model and the actual power generation. Subsequently, the probability of a weather forecast state change within the error occurrence period is calculated, and this information is used to update the power generation forecast value. The performance evaluation was restricted to July and August. The average improvement rate in predicted power generation was 24.5%. Using the proposed model, updates to weather forecast status information were implemented, leading to enhanced accuracy in predicting solar power generation.
KSP Keywords
Change Point, Enhanced Accuracy, First stage, Forecast value, Improvement rate, Performance evaluation, Prediction error, Prediction methods, Proposed model, Renewable energy sources(RES), Solar Power Generation
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.