Construction sites remain highly perilous work environments globally, exposing employees to numerous hazards that can result in severe injuries or fatalities. To resolve this several solutions based on quantitative approaches have been developed. However the wide adoption of preexisting solutions is hindered by lack of accuracy. To this aim the development of an efficient fuzzy inference system has become a de-facto necessity. In this paper, we propose an edge inference framework based on multi-layered fuzzy logic for safety of construction workers. The proposed system employs an edge computing-based framework where IoT devices collect, store, and manage data to offer safety services. Multi-layer fuzzy logic is applied to infer the worker safety index based on rules that consist of construction environment factors. The multi-layer fuzzy logic is fed with weather, building and worker data collected from IoT nodes as inputs. The safety risk assessment process involves analyzing various factors. Weather information, such as temperature, humidity, and rainfall data, is considered to assess the risk to safety. The condition of the building is evaluated by analyzing load, strain, and inclination data. Additionally, the safety risk to workers is analyzed by taking into account their heart rate and location information. The initial layer's outputs are utilized as inputs for the subsequent layer, where an integrated safety index is inferred. Ultimately, the safety index is generated as the final outcome. The system's results are conveyed through warnings and an error measurement on a safety scale ranging from 1 to 10. Furthermore, web service is developed to allow the construction management to check the worker safety condition of the construction site in real-time, while also monitoring the operational status of the IoT devices, allowing for the early detection of sensor malfunction and the subsequent guarantee of worker safety. Extensive evaluations conducted to test the performance of the developed framework verify its efficiency to provide improved risk assessment, real-time monitoring, and proactive safety actions, encouraging a safer and more productive work environment.
KSP Keywords
Construction management, Construction workers, Data collected, Early detection, Edge Computing, Environment factors, Fuzzy Logic, IoT devices, Its efficiency, Location information, Multi-Layer Fuzzy
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.