Journal Article
Reconfigurable dual-mode optical encryption enabled by block copolymer photonic crystal with micro-imprinted holographic metasurface
Cited 8 time in
Share
Authors
Seungsoo Mun, Tae Hyun Park, Jin Woo Oh, Taebin Kim, Kyuho Lee, Chang Eun Lee, HoYeon Kim, Jong Woong Park, Seungbae Jeon, Du Yeol Ryu, Sanghoon Cheon, Yong-Hae Kim, Seung-Yeol Lee, Chi-Sun Hwang, Joo Yeon Kim, Cheolmin Park
Dual-mode optical encryption based on holographic metasurfaces and color components is of great attraction because of their enhanced information security and storage; however, the realization of independently as well as reversibly encodable holographic metasurfaces and color components remains unreported. Herein, we present reconfigurable dual-mode encryptions of structural colors (SC) and holograms, achieved through stimuli-responsive block copolymer (BCP) photonic crystals (PCs) with micro-imprinted holographic metasurfaces. Holographic images appear when the micro-imprinted BCP PCs, consisting of self-assembled alternating lamellae of two dielectrics, are exposed to an incident laser. A characteristic SC develops in the visible range when the imprinted film is immersed in a liquid agent that can swell one of the dielectrics, allowing for dual-mode holographic and SC encodings in the solid and liquid states, respectively. The dual-mode optical encoding is reconfigured. The holographic image can be erased and replaced with another micropattern, while preserving the SC. Moreover, an SC, set by crosslinking of the swellable lamellae, is reset by chemical de-crosslinking and subsequent transient re-crosslinking, enabling the SC reconfigurability of the BCP PC film. A prototype of a high-security reconfigurable dual encryption has been developed, wherein true information is decrypted when holographic passwords are confirmed with full-color visible SC passwords.
KSP Keywords
Block copolymer(BCP), Dual-Mode, Full-color, Optical encryption, Stimuli-responsive, Visible range, information security, optical encoding, photonic crystal(PC), self-assembled, structural color
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.