Conference on Neural Information Processing Systems (NeurIPS) 2023 : Workshop, pp.1-7
Language
English
Type
Conference Paper
Abstract
The Masked autoencoder (MAE) has drawn attention as a representative self-supervised approach for masked image modeling with vision transformers. However, even though MAE shows better generalization capability than fully supervised training from scratch, the reason why has not been explored. In another line of work, the Reconstruction Consistent Masked Auto Encoder (RC-MAE), has been proposed which adopts a self-distillation scheme in the form of an exponential moving average (EMA) teacher into MAE, and it has been shown that the EMA teacher performs a conditional gradient correction during optimization. To further investigate the reason for better generalization of the self-supervised ViT when trained by MAE (MAE-ViT) and the effect of the gradient correction of RC-MAE from the perspective of optimization, we visualize the loss landscapes of the self-supervised vision transformer by both MAE and RC-MAE and compare them with the supervised ViT (Sup-ViT). Unlike previous loss landscape visualizations of neural networks based on classification task loss, we visualize the loss landscape of ViT by computing pre-training task loss. Through the lens of loss landscapes, we find two interesting observations: (1) MAE-ViT has a smoother and wider overall loss curvature than Sup-ViT. (2) The EMA-teacher allows MAE to widen the region of convexity in both pretraining and linear probing, leading to quicker convergence. To the best of our knowledge, this work is the first to investigate the self-supervised ViT through the lens of the loss landscape.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.