Fire and nonfire experiments are required to observe the response characteristics of photoelectric smoke detectors; however, repeating all experiments by changing the structure and configuration of photoelectric smoke detectors is time-consuming and expensive. No simulations have been performed to evaluate the response characteristics of photoelectric smoke detectors. In this study, multiple-scattering-based optical simulations were performed to investigate the response characteristics of a photoelectric smoke detector. The radiant energy of light propagating in various media (white smoke, black smoke, water vapor, and dust) with different particle sizes and refractive indices was measured using a photodetector as a function of concentration. Multiple-scattering-based optical simulations that can analyze the response characteristics of photoelectric smoke detectors without fire or nonfire experiments are expected to be actively used for developing new smoke detectors. In addition, the results for the nonspherical soot particles can be analyzed via multiple-scattering-based optical simulations using the discrete dipole approximation method.
KSP Keywords
Approximation methods, Discrete dipole approximation, Optical simulation, Photoelectric Smoke Detector, Radiant energy, Soot particles, Structure and configuration, Water vapor, multiple scattering, particle size, refractive index
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.