Smoke detectors are the most widely used fire detectors due to their high sensitivity. However, they have persistently faced issues with false alarms, known as nuisance alarms, as they cannot distinguish smoke particles, and their responsiveness varies depending on the particle size and concentration. Although technologies for distinguishing smoke particles have shown promising results, the hardware limitations of smoke detectors necessitate an intelligent approach to analyze scattering signals of various wavelengths and their temporal changes. In this paper, we propose a pipeline that can distinguish smoke particles based on scattering signals of various wavelengths as input. In the data extraction phase, we propose methods for extracting datasets from time series data. We propose a method that combines traditional approaches, early detection methods, and a Dynamic Time Warping technique that utilizes only the shape of the signal without preprocessing. In the learning model and classification phase, we present a method to select and compare various architectures and hyperparameters to create a model that achieves the best classification performance for time series data. We create datasets for six different targets in our presented sensor and smoke particle test environment and train classification models. Through performance comparisons, we identify architecture and parameter combinations that achieve up to 98.7% accuracy. Ablation studies under various conditions demonstrate the validity of the chosen architecture and the potential of other models.
KSP Keywords
Classification Performance, Classification models, Data Extraction, Detection Method, Dynamic Time Warping, Early Detection, False Alarm, High Sensitivity, Intelligent approach, Learning model, Nuisance alarm
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.