ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Conference Paper A Workload Prediction Approach using Models Stacking based on Recurrent Neural Network and Autoencoder
Cited 19 time in scopus Share share facebook twitter linkedin kakaostory
Authors
Hoang Minh Nguyen, Sungpil Woo, Janggwan Im, Taejoon Jun, Daeyoung Kim
Issue Date
2016-12
Citation
International Conference on High Performance Computing and Communcations (HPCC) 2016, pp.929-936
Publisher
IEEE
Language
English
Type
Conference Paper
DOI
https://dx.doi.org/10.1109/HPCC-SmartCity-DSS.2016.0133
Abstract
Workload prediction in computing systems like Cloud and Grid is an essential prerequisite for successful load balancing and achieving service-level agreements. However, since workloads in different systems and architectures have varied characteristics, providing an accurate single prediction model can be very challenging. Therefore, in this paper we have designed and implemented a model of stacking prediction algorithms to predict workload time series in Cloud and Grid systems using Recurrent Neural Network and Autoencoder. We have also performed experiments with several datasets containing different workload types and conducted comparisons with each component algorithm as well as the fixed weighted optimal combination value. Experimental results show that our model achieves lower average NRMSE in 3 datasets than the fixed weighted optimal combination value, and outperforms the component algorithms with improvements in NRMSE from 7.43% to 12.45%.
KSP Keywords
Grid system, Load balancing, Optimal combination, Recurrent Neural Network(RNN), Service-level Agreement(SLA), Time series, Workload prediction, computing systems, prediction algorithms, prediction approach, prediction model