Developing all solid-state batteries (ASSBs) employing inorganic solid electrolytes is currently attracting much attention due to their possibility of improved safety in a wide operating temperature range and increased energy density compared to those from traditional lithium ion batteries. Among various kinds of solid electrolytes (SEs), sulfide SEs are widely recognized as one of the most promising candidates as they exhibit high lithium ion conductivity comparable to that of liquid electrolytes. However, it is well realized that sulfide SEs have a limited electrochemical potential window, which is closely linked to unfavorable side reactions with other components (e.g., active materials, conductive carbon, and binders) during battery operation. Herein, for the first time, we reveal a parasitic reaction of nitrile butadiene rubber (NBR), mainly used in the fabrication of wet-process electrodes for ASSBs, and also systematically investigate the chemical decomposition of nitrile substitutions in NBR, resulting in a huge interfacial resistance in the sulfide-composite electrode. To address this challenge, we propose modifying the chemical stability of nitrile groups by introducing Li ions. This modification helps suppress side reactions during the initial charge–discharge process and ultimately enhances battery performance.
KSP Keywords
Active materials, All-solid-state lithium batteries, Composite Electrode, Electrochemical potential, Energy Density, Interfacial resistance, Ion batteries, Liquid electrolyte, Lithium-ion batteries(LIBs), Nitrile groups, Nitrile rubber
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.