Face parsing, the segmentation of facial components at the pixel level, is pivotal for comprehensive facial analysis. However, previous studies encountered challenges, showing reduced performance in areas with small or thin classes like necklaces and earrings, and struggling to adapt to occlusion scenarios such as masks, glasses, caps or hands. To address these issues, this study proposes a robust face parsing technique through the strategic integration of self-attention and self-distillation methods. The self-attention module enhances contextual information, enabling precise feature identification for each facial element. Multi-task learning for edge detection, coupled with a specialized loss function focusing on edge regions, elevates the understanding of fine structures and contours. Additionally, the application of self-distillation for fine-tuning proves highly efficient, producing refined parsing results while maintaining high performance in scenarios with limited labels and ensuring robust generalization. The integration of self-attention and self-distillation techniques addresses challenges of previous studies, particularly in handling small or thin classes. This strategic fusion enhances overall performance, achieving computational efficiency, and aligns with the latest trends in this research area. The proposed approach attains a Mean F1 score of 88.18% on the CelebAMask-HQ dataset, marking a significant advancement in face parsing with state-of-the-art performance. Even in challenging occlusion areas like hands and masks, it demonstrates a remarkable F1 score of over 99%, showcasing robust face parsing capabilities in real-world environments.
KSP Keywords
Art performance, Computational Efficiency, Contextual information, Coupled with, Face parsing, Facial analysis, Facial components, Feature Identification, Fine structure, Fine-tuning, High performance
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.