Journal Article
An algorithm of line segmentation and reading order sorting based on adjacent character detection: A post-processing of OCR for digitization of Chinese historical texts
In recent times, the advent of AI-based optical character recognition (OCR) has garnered significant attention in the realm of digital text conversion. However, it is imperative to note that OCR solely identifies individual characters or words, and lacks the ability to reunite them into cohesive units such as words or sentences. Consequently, the manual sorting of them to establish the appropriate reading order has emerged as a bottleneck. In this paper, we present an algorithm termed adjacent character detection (ACD), designed to serve as a post-processing of OCR, facilitating automatic digital text conversion. The algorithm involves line segmentation through a quad-ACD scan (up-down-down-up), allowing it to consecutively discern characters within a column based on their adjacency relations. Conventional projection profile analyses have struggled to effectively partition the distinct internal structure of Chinese historical text, where two annotation columns often subdivide from a single body column. In contrast, our ACD algorithm employs an approach, reuniting adjacent characters rather than fragmenting the entire text into isolated entities. Additionally, ACD algorithm enabled body/annotation classification for OCR-detected characters based on the pattern analysis of its quad scan. This cumulative information empowers the conversion of digital text in a desired reading order. To assess the efficacy of the proposed algorithm, a set of ground-truth OCR result was subjected to rigorous testing, culminating in a reading order accuracy of 98.6%. Noteworthy robustness was also demonstrated in the face of misaligned columns, experimentally induced by applying tilt, warp, and wavy noises to the original digital images. Lastly, the algorithm was integrated with two pre-developed OCR models, resulting in a reading order accuracy of 97.7%.
KSP Keywords
Character detection, Ground Truth, Line Segmentation, Optical character Recognition, Post-Processing, Projection profile, Reading order, digital image, individual characters, internal structure, pattern analysis
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.