Open Set Recognition (OSR) poses significant challenges in distinguishing known from unknown classes. In OSR, the overconfidence problem has become a persistent obstacle, where visual recognition models often misclassify unknown objects as known objects with high confidence. This issue stems from the fact that visual recognition models often lack the integration of common-sense knowledge, a feature that is naturally present in language-based models but lacking in visual recognition systems. In this paper, we propose a novel approach to enhance OSR performance by distilling common-sense knowledge into visual prompts. Utilizing text prompts that embody common-sense knowledge about known classes, the proposed visual prompt is learned by extracting semantic common-sense features and aligning them with image features from visual recognition models. The unique aspect of this work is the training of individual visual prompts for each class to encapsulate this common-sense knowledge. Our methodology is model-agnostic, capable of enhancing OSR across various visual recognition models, and computationally light as it focuses solely on training the visual prompts. This research introduces a method for addressing OSR, aiming at a more systematic integration of visual recognition systems with common-sense knowledge. The obtained results indicate an enhancement in recognition accuracy, suggesting the applicability of this approach in practical settings.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.