Glass Box Machine Learning is, in this study, a type of partially supervised data mining and prediction technique, like a neural network in which each weight or pattern of mutually relevant weights is now replaced by a meaningful “probabilistic knowledge element.” We apply it to retrospective cohort studies using large numbers of structured medical records to help select candidate patients for future cohort studies and similar clinical trials. Here it is applied to aid analysis of approaches to aid Deep Learning, but the method lends itself well to direct computation of odds with “explainability” in study design that can complement “Black Box” Deep Learning. Cohort studies and clinical trials traditionally involved at least one 2 × 2 contingency table, but in the age of emerging personalized medicine and the use of machine learning to discover and incorporate further relevant factors, these tables can extend into many extra dimensions as a 2 × 2 x 2 × 2 x ….data structure by considering different conditional demographic and clinical factors of a patient or group, as well as variations in treatment. We consider this in terms of multiple 2 × 2 x 2 data substructures where each one is summarized by an appropriate measure of risk and success called DOR*. This is the diagnostic odds ratio DOR for a specified disease conditional on a favorable outcome divided by the corresponding DOR conditional on an unfavorable outcome. Bleeding peptic ulcer was chosen as a complex disease with many influencing factors, one that is still subject to controversy and that highlights the challenges of using Real World Data.
KSP Keywords
Black box, Clinical trials, Cohort studies, Complex Disease, Contingency table, Data mining(DM), Data structure, Extra dimensions, Influencing factors, Large numbers, Medical records
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.