In healthcare, anomaly detection has emerged as a central application. This study presents an ultra-low power processor tailored for wearable devices dedicated to anomaly detection. Introducing a unique Day–Night architecture, the processor is bifurcated into two distinct segments: The Day segment and the Night segment, both of which function autonomously. The Day segment, catering to generic wearable applications, is designed to remain largely inactive, awakening only for specific tasks. This approach leads to considerable power savings by incorporating the Main-CPU and system interconnect, both major power consumers. Conversely, the Night segment is dedicated to real-time anomaly detection using sensor data analytics. It comprises a Sub-CPU and a minimal set of IPs, operating continuously but with minimized power consumption. To further enhance this architecture, the paper presents an ultra-lightweight RISC-V core, All-Night core, specialized for anomaly detection applications, replacing the traditional Sub-CPU. To validate the Day–Night architecture, we developed a prototype processor and implemented it on an FPGA board. An anomaly detection application, optimized for this prototype, was also developed to showcase its functional prowess. Finally, when we synthesized the processor prototype using 45 nm process technology, it affirmed our assertion of achieving an energy reduction of up to 57%.
KSP Keywords
5 nm, Energy Reduction, FPGA board, Low Power Processor, Power Consumption, RISC-V, Real-time anomaly detection, Sensor data analytics, Ultra-lightweight, Ultra-low power(ULP), Wearable Devices
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.