All-solid-state lithium-sulfur battery (ASLSB) is deemed a promising next-generation energy storage device owing to its combination of high theoretical specific energy (2600 Wh kg−1) derived from the sulfur active material, and exceptional safety characteristics and the ability to suppress the polysulfide shuttle effect through the use of solid electrolyte (SE). However, the low electronic and ionic conductivity of sulfur, coupled with the poor solid–solid interfacial contact inherent in all-solid-state configuration, has resulted in poor electrochemical performance. Herein, NiO electrocatalyst supported on N-doped sites of super-p was synthesized and incorporated as a carbon additive in the composite cathode of the ASLSB. The direct growth of nanosized NiO electrocatalyst on the N-doped sites of super-p ensures facile electron transfer to the electrocatalyst surface, while maximizing the electrocatalyst's surface area. As a result, the overpotential during charging and discharging of the ASLSB was significantly reduced, as assessed through galvanostatic intermittent titration technique and cyclic voltammetry, indicating enhanced redox conversion of sulfur. Furthermore, the Li6PS5Cl sulfide SE induces solid–solid conversion of sulfur, eliminating the dissolution issue of polysulfide intermediates and ensuring good cycle performance. The assembled ASLSB exhibits a high reversible capacity of 1845 mAh g−1 at 0.05C at room temperature and enhanced rate capability at high C-rates, operated at 60 °C. Even at a substantially high sulfur loading level of 6.65 mg cm−2, a maximum areal capacity of 9.48 mAh cm−2 was achieved at room temperature, highlighting the important role of electrocatalyst in realizing high performance ASLSBs.
KSP Keywords
Active materials, All-solid-state, Carbon additive, Composite cathode, Coupled with, Cycle performance, Cyclic voltammetry, Electrochemical performance, Electron transfer, Electronic and ionic conductivity, Energy Storage Devices
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.