Video surveillance systems are integral to bolstering safety and security across multiple settings. With the advent of deep learning (DL), a specialization within machine learning (ML), these systems have been significantly augmented to facilitate DL-based video surveillance services with notable precision. Nevertheless, DL-based video surveillance services, which necessitate the tracking of object movement and motion tracking (e.g., to identify unusual object behaviors), can demand a significant portion of computational and memory resources. This includes utilizing GPU computing power for model inference and allocating GPU memory for model loading. To tackle the computational demands inherent in DL-based video surveillance, this study introduces a novel video surveillance management system designed to optimize operational efficiency. At its core, the system is built on a two-tiered edge computing architecture (i.e., client and server through socket transmission). In this architecture, the primary edge (i.e., client side) handles the initial processing tasks, such as object detection, and is connected via a Universal Serial Bus (USB) cable to the Closed-Circuit Television (CCTV) camera, directly at the source of the video feed. This immediate processing reduces the latency of data transfer by detecting objects in real time. Meanwhile, the secondary edge (i.e., server side) plays a vital role by hosting a dynamically controlling threshold module targeted at releasing DL-based models, reducing needless GPU usage. This module is a novel addition that dynamically adjusts the threshold time value required to release DL models. By dynamically optimizing this threshold, the system can effectively manage GPU usage, ensuring resources are allocated efficiently. Moreover, we utilize federated learning (FL) to streamline the training of a Long Short-Term Memory (LSTM) network for predicting imminent object appearances by amalgamating data from diverse camera sources while ensuring data privacy and optimized resource allocation. Furthermore, in contrast to the static threshold values or moving average techniques used in previous approaches for the controlling threshold module, we employ a Deep Q-Network (DQN) methodology to manage threshold values dynamically. This approach efficiently balances the trade-off between GPU memory conservation and the reloading latency of the DL model, which is enabled by incorporating LSTM-derived predictions as inputs to determine the optimal timing for releasing the DL model. The results highlight the potential of our approach to significantly improve the efficiency and effective usage of computational resources in video surveillance systems, opening the door to enhanced security in various domains.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.