The three-dimensional (3D) structuring of interfaces in solid oxide fuel cells (SOFCs) is a valuable morphological approach that maximizes the reaction area and ion transfer pathways, enabling operation at lower temperatures. To quantify the performance improvement attributable to these 3D interfaces, analyzing their effects on both the anode and cathode sides is necessary. In this study, we fabricated an SOFC with asymmetric, a microscale prism-shaped anode/electrolyte interface and a planar electrolyte/cathode interface. This was achieved using an integrated approach involving ceramic micropatterning and subsequent electrospray deposition. The fabricated 3D cell achieved a 42.8% increase in peak power density (1.115 W cm−2) at 650 °C relative to a reference cell with planar interfaces on both sides of the electrolyte layer. It also exhibited reductions of 38.4% and 23.9% in area-specific ohmic and area-specific polarization resistance (0.053 and 0.162 Ω cm2), respectively. Additionally, under controlled gas partial pressure conditions for the anode and cathode, the effects of the asymmetric interfaces on the electrochemical performance of the cell were evaluated via advanced electrochemical impedance analysis.
KSP Keywords
3D interfaces, Anode and cathode, Cathode interface, Electrochemical performance, Electrolyte layer, Electrospray deposition, Lower temperature, Morphological approach, Peak power density, Reference cell, Solid oxide fuel cells(SOFCs)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.