In the 5G network, small cells play a key role in enhancing network capacity and providing ultra-fast, low-latency data services. The traffic load per small cell is highly dynamic and suffers from rapid fluctuations, necessitating appropriate user association algorithms for load balancing. Nevertheless, existing researches often adopt overly tractable traffic models or rely on outdated datasets, making their sophisticated algorithms ineffective. In this paper, we take an improved approach: (i) we collect real-world 5G traffic data ourselves to accurately model the traffic load, and (ii) propose a low-complexity, one-shot user association algorithm, which makes a decision with a single computation without iterative operations. The proposed algorithm determines user association for cell-edge users based on the biased received power of small cells. Crucially, it dynamically adjusts the bias of each small cell in response to its traffic load. We have discovered that the 5G traffic load is dynamic, yet sufficiently predictable due to its daily pattern. Leveraging this characteristic, the proposed algorithm increases the bias value for small cells predicted to have lower traffic load in the near future and decreases it for those expected to have higher traffic load, thus achieving load balancing in 5G networks. The simulation results verify the superiority of our approach in terms of load fairness over the conventional static bias schemes, such as cell range expansion (CRE), although it slightly underperforms compared to the near-optimal results derived from an iterative solution with significantly higher computational complexity.
KSP Keywords
5G networks, 5G small cell networks, Association algorithm, Cell range expansion, Computational complexity, Highly dynamic, Key role, Load balancing algorithm, Low complexity, Low latency, Network capacity
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.