ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Journal Article Dynamic and Super-Personalized Media Ecosystem Driven by Generative AI: Unpredictable Plays Never Repeating the Same
Cited 5 time in scopus Share share facebook twitter linkedin kakaostory
Authors
Sungjun Ahn, Hyun-Jeong Yim, Youngwan Lee, Sung-Ik Park
Issue Date
2024-09
Citation
IEEE Transactions on Broadcasting, v.70, no.3, pp.980-994
ISSN
0018-9316
Publisher
Institute of Electrical and Electronics Engineers
Language
English
Type
Journal Article
DOI
https://dx.doi.org/10.1109/TBC.2024.3380474
Abstract
This paper introduces a media service model that exploits artificial intelligence (AI) video generators at the receive end. This proposal deviates from the traditional multimedia ecosystem, completely relying on in-house production, by shifting part of the content creation onto the receiver. We bring a semantic process into the framework, allowing the distribution network to provide service elements that prompt the content generator rather than distributing encoded data of fully finished programs. The service elements include fine-tailored text descriptions, lightweight image data of some objects, or application programming interfaces, comprehensively referred to as semantic sources, and the user terminal translates the received semantic data into video frames. Empowered by the random nature of generative AI, users can experience super-personalized services accordingly. The proposed idea incorporates situations in which the user receives different service providers’ element packages, either in a sequence over time or multiple packages at the same time. Given promised in-context coherence and content integrity, the combinatory dynamics will amplify the service diversity, allowing the users to always chance upon new experiences. This work particularly aims at short-form videos and advertisements, which the users would easily feel fatigued by seeing the same frame sequence every time. In those use cases, the content provider’s role will be recast as scripting semantic sources, transformed from a thorough producer. Overall, this work explores a new form of media ecosystem facilitated by receiver-embedded generative models, featuring both random content dynamics and enhanced delivery efficiency simultaneously.
KSP Keywords
Application programming interface, Content integrity, Content provider, Distribution network(DN), Generative models, Image data, Media service, Over time, Personalized service, Semantic process, Service Model