ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Journal Article First Realization of Batch Normalization in Flash-Based Binary Neural Networks Using a Single Voltage Shifter
Cited 1 time in scopus Share share facebook twitter linkedin kakaostory
Authors
Sungmin Hwang, Wangjoo Lee, Jeong Woo Park, Dongwoo Suh
Issue Date
2024-10
Citation
IEEE Transactions on Nanotechnology, v.23, pp.677-683
ISSN
1536-125X
Publisher
Institute of Electrical and Electronics Engineers
Language
English
Type
Journal Article
DOI
https://dx.doi.org/10.1109/TNANO.2024.3466128
Abstract
Batch normalization (BN) is a technique used to enhance training speed and generalization performance by mitigating internal covariate shifts. However, implementing BN in hardware presents challenges due to the need for an additional complex circuit to normalize, scale and shift activations. We proposed a hardware binary neural network (BNN) system capable of BN in hardware, which is consist of an AND-type flash memory array as a synapse and a voltage sense amplifier (VSA) as a neuron. In this system, hardware BN was implemented using a voltage shifter by adjusting the threshold of the binary neuron. To validate the effectiveness of the proposed hardware-based BNN system, we fabricated a charge trap flash with a gate stack of SiO 2 /Si 3 N 4 /SiO 2 . The electrical characteristics were modelled by using BSIM3 model parameters so that the proposed circuit was successfully demonstrated by a SPICE simulation. Moreover, variation effects of the voltage shifter were also analyzed using Monte Carlo simulation. Finally, the performance of the proposed system was proved by incorporating the SPICE results into a high-level simulation of binary LeNet-5 for MNIST pattern recognition, resulting in the improvement of the proposed system in terms of power and area, compared to the previous studies.
KSP Keywords
Batch normalization, Electrical characteristics, Flash-based, Generalization performance, LeNet-5, Model parameter, Monte-Carlo simulation(MCS), Pattern recognition, SPICE Simulation, Sense amplifier(SA), Si 3