Encapsulating materials for light-emitting diodes (LEDs) with optical-grade polymeric resin is essential to protect from external environments and to improve light-extraction efficiency (LEE) in micro-scale LED (µ-LED). In addition, the formation of microlens can further enhance the optical performance of µ-LED. However, previously developed materials have limitations due to a lack of rheological properties and thermal stability. Here, the fabrication of sol–gel derived phenyl siloxane hybrid (PSH) that has a high refractive index (n), for use as an encapsulating material for µ-LEDs is reported. Fumed silica nanoparticles (FSNs) are mixed with the PSH to yield siloxane/silica nanocomposites that have thixotropic properties, which enable the formation of microlens arrays. Optimizing the concentration of FSN in the nanocomposites yields a siloxane/silica nanocomposite that has a high n = 1.590 at 486 nm, high thixotropic index = 3.956, and increased optical haze (79.83% at 550 nm) makes light scattering. The use of PSH significantly increases the LEE of the LED (124.6% increase compared to an LED that does not use it). Finally, the siloxane/silica nanocomposite is used to direct-dispense microlenses on µ-LEDs in arrays. The encapsulation strategy can increase both the LEE and reliability of µ-LEDs.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.