The fifth generation (5G) and beyond wireless networks are envisioned to provide an integrated communication and computing platform that will enable multipurpose and intelligent networks driven by a growing demand for both traditional end users and industry verticals. This evolution will be realized by innovations in both core and access capabilities, mainly from virtualization technologies and ultra-dense networks, e.g., software-defined networking (SDN), network slicing, network function virtualization (NFV), multi-access edge computing (MEC), terahertz (THz) communications, etc. However, those technologies require increased complexity of resource management and large configurations of network slices. In this new milieu, with the help of artificial intelligence (AI), network operators will strive to enable AI-empowered network management by automating radio and computing resource management and orchestration processes in a data-driven manner. In this regard, most of the previous AI-empowered network management approaches adopt a traditional centralized training paradigm where diverse training data generated at network functions over distributed base stations associated with MEC servers are transferred to a central training server. On the other hand, to exploit distributed and parallel processing capabilities of distributed network entities in a fast and secure manner, federated learning (FL) has emerged as a distributed AI approach that can enable many AI-empowered network management approaches by allowing for AI training at distributed network entities without the need for data transmission to a centralized server. This article comprehensively surveys the field of FL-empowered mobile network management for 5G and beyond networks from access to the core. Specifically, we begin with an introduction to the state-of-the-art of FL by exploring and analyzing recent advances in FL in general. Then, we provide an extensive survey of AI-empowered network management, including background on 5G network functions, mobile traffic prediction, and core/access network management regarding standardization and research activities. We then present an extensive survey of FL-empowered network management by highlighting how FL is adopted in AI-empowered network management. Important lessons learned from this review of AI and FL-empowered network management are also provided. Finally, we complement this survey by discussing open issues and possible directions for future research in this important emerging area.
KSP Keywords
5G and beyond, 5G networks, Computing platform, Computing resources, Data transmission, Data-Driven, Distributed and parallel processing, Edge Computing, End users, Federated learning, Fifth-Generation(5G)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.