Computer-generated holography (CGH) has been anticipated in augmented reality (AR) field since it can fully provide multi-depth 3D information to users. As the gradient descent algorithms have been developed and intensively applied to the holography, traditional challenges in CGH, such as speckle noises and excessive computation load, have been overcome for a given object. However, despite the widespread consumption form of media contents, studies for the frame interpolation of high-quality computer-generated holographic video (CGHV) has not been substantially conducted yet. Here, we demonstrate a method for rapid calculation of speckle-free, frame interpolated CGHV using stochastic gradient descent algorithm, both in numerical and experimental results. We demonstrate that the similarity between input and target images is related to a speed of convergence to desired image quality levels, and our method enables the generation of interpolated frames with controlled intensity ratios during the optimization process. Our proposed method can reduce the burden of computation for high-quality CGHV, so that it can be potentially used for holographic display and AR applications such as AR head-up display in automobile.
KSP Keywords
3D information, AR applications, Augmented reality(AR), Frame Interpolation, Head-up display, High-quality, Holographic display, Intensity ratio, Multi-depth, Quality level, Speckle Noise
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.