Smartphone-based location estimation technology is becoming increasingly important across various fields. Accurate location estimation plays a critical role in life-saving efforts during emergency rescue situations, where rapid response is essential. Traditional methods such as GPS often face limitations in indoors or in densely built environments, where signals may be obstructed or reflected, leading to inaccuracies. Similarly, fingerprinting-based methods rely heavily on existing infrastructure and exhibit signal variability, making them less reliable in dynamic, real-world conditions. In this study, we analyzed the strengths and weaknesses of different types of wireless signal data and proposed a new deep learning-based method for location estimation that comprehensively integrates these data sources. The core of our research is the introduction of a ‘matching-map image’ conversion technique that efficiently integrates LTE, WiFi, and BLE signals. These generated matching-map images were applied to a deep learning model, enabling highly accurate and stable location estimates even in challenging emergency rescue situations. In real-world experiments, our method, utilizing multi-source data, achieved a positioning success rate of 85.27%, which meets the US FCC’s E911 standards for location accuracy and reliability across various conditions and environments. This makes the proposed approach particularly well-suited for emergency applications, where both accuracy and speed are critical.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.