Despite significant advancements in all-solid-state batteries (ASSBs), the reliance on thick solid electrolyte (SE) membranes hinders their commercial viability. Although the dry process using polytetrafluoroethylene (PTFE) binder is proposed for thin SE membranes, a comprehensive understanding of the correlation between PTFE fibrillation and SE membrane quality remains lacking. Here an important guidance is provided for producing durable SE membranes that can be reduced to sub-20-µm thickness by regulating the entanglement networks of PTFE. While establishing fabrication parameters; shear time and shear temperature, a dominant effect of the number-average molecular weight (Mn) on PTFE fibrillation is revealed for the first time. Moreover, the degree of PTFE fibrillation is quantified using systematic X-ray diffraction (XRD) analysis. The SE membrane utilizing the high-Mn PTFE binder that achieves a maximum fibrillation degree (≈98%) and thus forms highly entangled fibrous PTFE network interweaving SE particles, exhibited superior toughness. Consequently, the 18 µm thick SE membrane with 0.5 wt% high-Mn PTFE shows a considerably higher areal conductance. The ASSB using this durable, ultrathin SE membrane outperforms its counterparts that used flimsy SE membranes or pure SE pellets. Finally, uniquely thin ASSBs demonstrate significantly improved cell-level energy densities, showcasing the promising potential for practical ASSB fabrication.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.