Recent advancements in learning-based technologies have led to the emergence of machine-learning applications across various fields. These machine-learning applications are being utilized to test product assurance and reliability. This paper presents a data analysis system designed to provide a no-code tool for data analysis across various domains. The system supports a range of machine learning algorithms and feature selection methods to facilitate efficient ML classification and regression analysis. Additionally, it selects the optimal variables that demonstrate the best performance for each dataset. We evaluate the performance of the proposed system using multiple benchmark datasets, including the Wisconsin Diagnostic Breast Cancer dataset, Wine Recognition dataset, Scania Truck APS dataset, and FordA dataset. The results demonstrate that the proposed system maintains high accuracy while significantly reducing the number of features, thereby improving processing speed. Our experiments highlight that the framework can maintain or even enhance accuracy with fewer features, suggesting its effectiveness for data analysis in various fields. Enhancing Product Assurance and Reliability through a No Code Machine Learning Framework
KSP Keywords
Benchmark datasets, Best performance, Breast Cancer dataset, Data analysis, Diagnostic breast cancer, High accuracy, Learning framework, Learning-based, Machine Learning Algorithms, Multiple benchmark, Processing speed
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.