In this study, the (001) β-Ga2O3 surface was dry etched employing the inductively coupled plasma-reactive ion etching (ICP-RIE) system, and Au/Ni/β-Ga2O3 Schottky barrier diodes (SBDs) were fabricated on the etched surface. The impact of ion bombardment on the (001) β-Ga2O3 surface during dry etching and its effect on current-voltage (I-V) characteristics and breakdown voltage was investigated. The forward current at higher bias decreased with increasing temperature due to the fact that the higher temperatures cause them to be less mobile owing to the scattering effects that reduce the on-current. The temperature-dependent I-V characterization of the Au/Ni/β-Ga2O3 SBD revealed a strong temperature dependence of barrier height and ideality factor associated with the barrier height inhomogeneity at the interface between Ni and β-Ga2O3. Analysis of the barrier height inhomogeneities with the assumption of Gaussian distribution of barrier heights confirmed the presence of a double Gaussian barrier distribution having mean barrier heights of 0.71 and 1.21 eV in the temperature range of (83-158) and (183-283 K), respectively. The Richardson constant value obtained from the modified Richardson plot interpreted with the consideration of Gaussian distribution of barrier heights closely matched with the theoretical value of β-Ga2O3. The fabricated Au/Ni/β-Ga2O3 SBD showed consistent breakdown voltage in the range of 670-695 V over repeated measurements with a time interval of 1 min without exhibiting any damage. However, after an initial breakdown voltage measurement, repeating the measurement with a 30 s interval led to an exponential increase in current, leading to the destruction of the device, associated with the low thermal conductivity of the substrate. The results obtained reveal that the ICP-RIE dry etching did not cause significant damage to the surface.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.