Journal Article
Efcacy of automated machine learning models and feature engineering for diagnosis of equivocal appendicitis using clinical and computed tomography fndings
This study evaluates the diagnostic efficacy of automated machine learning (AutoGluon) with automated feature engineering and selection (autofeat), focusing on clinical manifestations, and a model integrating both clinical manifestations and CT findings in adult patients with ambiguous computed tomography (CT) results for acute appendicitis (AA). This evaluation was compared with conventional single machine learning models such as logistic regression(LR) and established scoring systems such as the Adult Appendicitis Score(AAS) to address the gap in diagnostic approaches for uncertain AA cases. In this retrospective analysis of 303 adult patients with indeterminate CT findings, the cohort was divided into appendicitis (n = 115) and non-appendicitis (n = 188) groups. AutoGluon and autofeat were used for AA prediction. The AutoGluon-clinical model relied solely on clinical data, whereas the AutoGluon-clinical-CT model included both clinical and CT data. The area under the receiver operating characteristic curve (AUROC) and other metrics for the test dataset, namely accuracy, sensitivity, specificity, PPV, NPV, and F1 score, were used to compare AutoGluon models with single machine learning models and the AAS. The single ML models in this study were LR, LASSO regression, ridge regression, support vector machine, decision tree, random forest, and extreme gradient boosting. Feature importance values were extracted using the “feature_importance” attribute from AutoGluon. The AutoGluon-clinical model demonstrated an AUROC of 0.785 (95% CI 0.691–0.890), and the ridge regression model with only clinical data revealed an AUROC of 0.755 (95% CI 0.649–0.861). The AutoGluon-clinical-CT model (AUROC 0.886 with 95% CI 0.820–0.951) performed better than the ridge model using clinical and CT data (AUROC 0.852 with 95% CI 0.774–0.930, p = 0.029). A new feature, exp(-(duration from pain to CT)3 + rebound tenderness), was identified (importance = 0.049, p = 0.001). AutoML (AutoGluon) and autoFE (autofeat) enhanced the diagnosis of uncertain AA cases, particularly when combining CT and clinical findings. This study suggests the potential of integrating AutoML and autoFE in clinical settings to improve diagnostic strategies and patient outcomes and make more efficient use of healthcare resources. Moreover, this research supports further exploration of machine learning in diagnostic processes.
KSP Keywords
Acute appendicitis, Adult patients, Area under the receiver operating characteristic curve, CT data, CT model, Clinical data, Computed tomography(C.T), Decision Tree(DT), Gradient Boosting, LASSO regression, Receiver Operating Characteristic curve(ROC)
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.