In the field of video depth estimation, significant strides have been made with deep learning-based multi-view stereo approaches. However, existing studies struggle to produce consistently accurate depth maps that account for both multi-view geometry and temporal consistency from monocular video contents. To overcome this limitation, we introduce CMVDE, an innovative video depth estimation framework that leverages a multi-view geometric-temporal coupling approach in an end-to-end manner. Our proposed geometric consistency module efficiently generates multi-view geometric features by employing mutual cross-view epipolar attention between adjacent video frames. Additionally, it compresses these features using the novel multi-scale feature compressor, producing an effective input tensor for the subsequent module. Moreover, our framework enhances temporal consistency across consecutive video frames with the temporal consistency module based on convolutional LSTM [1] leveraging previous depth information as geometric guidance. Compared to state-of-the-art models, our approach achieves superior performance in depth quality and consecutive consistency on the ScanNet [2] and 7-Scenes [3] datasets, surpassing previous multi-view video depth estimation methods.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.