We propose a hybrid modeling technique for human signal detection through the walls using distributed radar. The high resolution and excellent penetration performance of the impulse radio ultrawideband (IR-UWB) radar systems can be used in important applications such as survivor detection in disaster scenarios. The radar channel transfer function between the transmitting and receiving radars obtained from the electromagnetic (EM) simulator is used for signal processing on MATLAB, followed by coherent synthesis. We perform a hybrid simulation of human detection through the walls using a single radar and verify it through experiments. In addition, we model vital signs behind the walls in various scenarios using the distributed radar and present the coherent synthesis results. The proposed hybrid modeling technique allows us to analyze various distributed radar scenarios in advance. This can reduce the time-consuming and resource-intensive real experiments. It is expected to contribute to radar system design optimization, signal processing algorithm development, and the identification of potential errors before practical implementation. The proposed method is expected to play an important role in various applications of IR-UWB radar technology, including disaster relief operations, noncontact biosignal monitoring, security, and surveillance systems.
KSP Keywords
Algorithm development, Coherent synthesis, Disaster Scenarios, Disaster relief operations, Distributed radar, High resolution, Human Detection, Hybrid Simulation, Hybrid modeling, IR-UWB radar, Impulse Radio Ultra-Wideband(IR-UWB)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.