Increasing reliance on digital twin technology for managing indoor environments necessitates the development of spatial expansion virtual sensors (SEVS). However, in practical applications, SEVS performance often deteriorates due to shifts in data distribution and environmental conditions, presenting challenges for consistent reliability. Most existing SEVS research has primarily focused on initial model development, with limited consideration to in-situ calibration strategies. This study introduces an autoencoder reconstruction residual-Wasserstein distance (AR-WD)-based error estimation model, designed for spatial expansion virtual sensors with the primary objective of enhancing their performance in practical applications. The proposed model utilizes residuals from autoencoders and Wasserstein features, which can be derived without additional sensor installations, for real-time calibration. A comprehensive evaluation was conducted using temperature data from a pigsty, where the AR-WD model demonstrated robust performance across various machine learning algorithms, particularly with random forest and XGBoost, showing high predictive accuracy with a mean absolute error as low as 0.086. These findings suggest that the integration of AR-WD features significantly enhances the reliability and accuracy of virtual sensors. In addition, the AR-WD model leverages the unique characteristics of SEVS to enable real-time error estimation based solely on input data variations, thereby addressing common limitations of non-intrusive calibration methods. This research not only advances the field of virtual sensor development but also provides critical insights for optimizing sensor systems in complex indoor settings.
KSP Keywords
Calibration method, Comprehensive Evaluation, Data Distribution, Digital Twin, Distance-based, Environmental conditions, Error estimation, Estimation model, Indoor environment, Machine Learning Algorithms, Mean Absolute Error
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.