Journal Article
Sample-efficient and occlusion-robust reinforcement learning for robotic manipulation via multimodal fusion dualization and representation normalization
Recent advances in visual reinforcement learning (visual RL), which learns from high-dimensional image observations, have narrowed the gap between state-based and image-based training. However, visual RL continues to face significant challenges in robotic manipulation tasks involving occlusions, such as lifting obscured objects. Although high-resolution tactile sensors have shown promise in addressing these occlusion issues through visuotactile manipulation, their high cost and complexity limit widespread adoption. In this paper, we propose a novel RL approach that introduces multimodal fusion dualization and representation normalization to enhance sample efficiency and robustness in robotic manipulation tasks involving occlusions — without relying on tactile feedback. Our multimodal fusion dualization technique separates the fusion process into two distinct modules, each optimized individually for the actor and the critic, resulting in tailored representations for each network. Additionally, representation normalization techniques, including LayerNorm and SimplexNorm, are incorporated into the representation learning process to stabilize training and prevent issues such as gradient explosion. We demonstrate that our method not only effectively tackles challenging robotic manipulation tasks involving occlusions but also outperforms state-of-the-art visual RL and state-based RL methods in both sample efficiency and task performance. Notably, this is achieved without relying on tactile sensors or prior knowledge, such as predefined low-dimensional coordinate states or pre-trained representations, making our approach both cost-effective and scalable for real-world robotic applications.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.