Despite efforts to leverage the modeling power of deep neural networks (DNNs) in audio coding, effectively deploying them in real-world applications is still problematic due to their high computational cost and the restricted range of target signals or achievable bit-rates. In this paper, we propose an alternative approach for integrating DNNs into a perceptual audio coder that allows for the optimization of the whole system in a data-driven, end-to-end manner. The key idea of the proposed method is to make DNNs control the quantization noise in the classic transform coding framework, specifically based on the modified discrete cosine transform (MDCT). The proposal includes a new DNN-based mechanism for adaptively adjusting the quantization step sizes of frequency bands targeting an arbitrary bit-rate, eventually acting as a data-driven differentiable psychoacoustic model. The side information regarding the adaptive quantization is also encoded and decoded by DNNs via learned representation. During training, the perceptual distortion is evaluated by a perceptual quality estimation model trained on actual human ratings so that the proposed audio codec can effectively allocate bits considering their effect on the perceptual quality. Through comparisons with legacy audio codecs (MP3 and AAC) and a neural audio codec (EnCodec), we show that our method can achieve further coding gains over the legacy codecs with a substantially lower computational load on the decoder compared to other neural audio codecs.
KSP Keywords
Audio codec, Audio coding, Bit rate, Coding Gain, Data-Driven, Deep neural network(DNN), End to End(E2E), Estimation model, Modified Discrete Cosine Transform(MDCT), Perceptual Quality, Psychoacoustic Model
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.