The visual sensory organ (VSO) serves as the primary channel for transmitting external information to the brain; therefore, damage to the VSO can severely limit daily activities. Visual-to-Auditory Sensory Substitution (V2A-SS), an innovative approach to restoring vision, offers a promising solution by leveraging neuroplasticity to convey visual information via auditory channels. Advances in information technology and artificial intelligence mitigate technical challenges such as low resolution and limited bandwidth, thereby enabling broader applicability of V2A-SS. Despite these advances, integrating V2A-SS effectively into everyday life necessitates extensive training and adaptation. Therefore, alongside addressing technical challenges, investigating effective learning strategies to accelerate the acceptance of V2A-SS is crucial. This study introduces a V2A-SS learning model based on the Information Processing Learning Theory (IPLT), encompassing the stages of "concept acquisition, rehearsal, assessment"to reduce the learning curve and enhance adaptation. The experimental results show that the proposed learning model improves recognition rates, achieving an 11% increase over simple random repetition learning. This improvement is significantly higher than the gain of 2.72% achieved by optimizing the V2A-SS algorithm with Mel-Scaled Frequency Mapping. This study suggests that a structured learning model for sensory substitution technologies can contribute to bridging gaps between technical feasibility and practical application. This underscores the need to develop effective learning models, alongside technological advancements, to accelerate the adoption of V2A-SS and neuroplasticity.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.