This paper introduces a novel joint model architecture for Speech Emotion Recognition (SER) that integrates both discrete and dimensional emotional representations, allowing for the simultaneous training of classification and regression tasks to improve the comprehensiveness and interpretability of emotion recognition. By employing a joint loss function that combines categorical and regression losses, the model ensures balanced optimization across tasks, with experiments exploring various weighting schemes using a tunable parameter to adjust task importance. Two adaptive weight balancing schemes, Dynamic Weighting and Joint Weighting, further enhance performance by dynamically adjusting task weights based on optimization progress and ensuring balanced emotion representation during backpropagation. The architecture employs parallel feature extraction through independent encoders, designed to capture unique features from multiple modalities, including Mel-frequency Cepstral Coefficients (MFCC), Short-term Features (STF), Mel-spectrograms, and raw audio signals. Additionally, pre-trained models such as Wav2Vec 2.0 and HuBERT are integrated to leverage their robust latent features. The inclusion of self-attention and co-attention mechanisms allows the model to capture relationships between input modalities and interdependencies among features, further improving its interpretability and integration capabilities. Experiments conducted on the IEMOCAP dataset using a leave-one-subject-out approach demonstrate the model’s effectiveness, with results showing a 1–2% accuracy improvement over classification-only models. The optimal configuration, incorporating the joint architecture, dynamic weighting, and parallel processing of multimodal features, achieves a weighted accuracy of 72.66%, an unweighted accuracy of 73.22%, and a mean Concordance Correlation Coefficient (CCC) of 0.3717. These results validate the effectiveness of the proposed joint model architecture and adaptive balancing weight schemes in improving SER performance.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.