In vehicle-to-everything (V2X) communications, roadside units (RSUs) play an essential role in connecting various network devices. In some cases, users may not be well-served by RSUs due to congestion, attenuation, or interference. In these cases, vehicular relays associated with RSUs can be used to serve those users. This paper uses stochastic geometry to model and analyze a spatially correlated heterogeneous vehicular network where both RSUs and vehicular relays serve network users such as pedestrians or other vehicles. We present an analytical model where the spatial correlation between roads, RSUs, relays, and users is systematically modeled via Cox point processes. Assuming users are associated with either RSUs or relays, we derive the association probability and the coverage probability of the typical user. Then, we derive the user throughput by considering interactions of links unique to the proposed network. This paper gives practical insights into designing spatially correlated vehicular networks assisted by vehicle relays. For instance, we express network performance such as user association, signal-to-interference (SIR) coverage probability, and network throughput as the functions of network key geometric parameters. In practice, this helps one to optimize the network so as to achieve ultra reliability or maximum user throughput of the vehicular networks by varying key aspects such as the relay density or the bandwidth for relays.
KSP Keywords
Analytical model, Coverage probability, Express network, Geometric parameters, Key aspects, Network devices, Network performance, Point process, Roadside Units, Stochastic geometry, User Association
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.