This study presents a straightforward design for a bandpass frequency selective surface (FSS) that achieves high optical transparency (OT) and enhances millimeter-wave transmission through glass windows for 5G indoor wireless communication. These FSSs, applied to glass windows and termed glass-penetrating transparent surfaces (GPTSs), are engineered with meta-surface technology to remain visually unobtrusive in environments where signal propagation control is essential. To maximize OT, a simple square-line pattern with miniaturized metal lines was employed. These square structures are cascaded to minimize the effect of the metal area on transparency, creating an FSS with a top layer of square loops and a bottom layer of grid wires separated by a transparent polymer layer. The proposed GPTSs were evaluated on two types of glass windows with low and high penetration losses. GPTS1, which features wider copper lines (100 μm), maintains good OT at 64 % and operates in the n257 and n261 frequency bands. In addition, GPTS2 employs narrower copper lines (30 μm), achieving an excellent OT of 81.4 %, and operating in the n257, n258, and n261 frequency bands. Results indicate that the proposed FSS designs hold promise as effective solutions for millimeter-wave signal filtering on glass windows.
KSP Keywords
High optical transparency, Meta-surface, Penetration loss, Signal Filtering, Signal Propagation, Surface technology, Top layer, bottom layer, frequency band, frequency selective surface, high penetration
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.