All-solid-state batteries (ASBs) are promising candidates for next-generation energy storage systems due to their enhanced safety and potential for higher energy densities. However, achieving practical ASBs with energy densities surpassing those of state-of-the-art lithium-ion batteries (LIBs) requires the development of thin, mechanically robust solid electrolyte separators (SESs). In this study, a scalable tape casting method is employed to fabricate a thin SES with a thickness of 27 µm and a high ionic conductance of 146 mS cm−2. The SES, composed of Li6PS5Cl SE and a laser-drilled porous polyimide (PI) scaffold with a high porosity of 69%, exhibits a tensile stress of 7.15 MPa at 6% strain, demonstrating the mechanical integrity necessary for commercial roll-to-roll fabrication. Due to its reduced thickness, the LiNi0.83Co0.11Mn0.06O2||Li-In pouch cell achieves outstanding estimated cell-level gravimetric and volumetric energy densities of 322 Wh kg−1 and 571 Wh L−1, respectively, demonstrating its practical viability. Additionally, simulation studies highlight the importance of optimizing the porosity and pore distribution of porous scaffolds to minimize Li-ion flux heterogeneity and prevent non-uniform Li plating in scaffold-supported SESs. Finally, a 4 m long, double-side coated SES is successfully manufactured using an industrial-level comma coater, demonstrating the feasibility of the approach for large-scale SES production and the forthcoming commercialization of ASBs.
KSP Keywords
Casting method, Double-side, Electrolyte separators, Energy Density, Energy Storage Systems(ESS), Energy storage(ES), High performance, Ion batteries, Ionic conductance, Lithium-ion batteries(LIBs), Next-generation
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.