Journal Article
Enhancing electrochemo-mechanical properties of graphite-silicon anode in all-solid-state batteries via solvent-induced polar interactions in nitrile binders
All-solid-state batteries (ASSBs) with sulfide-type solid electrolytes (SEs) are gaining significant attention due to their potential for the enhanced safety and energy density. In the slurry-coating process for ASSBs, nitrile rubber (NBR) is primarily used as a binder due to its moderate solubility in non-polar solvents, which exhibites minimal chemical reactivity with sulfide SEs. However, the NBR binder, composed of butadiene and acrylonitrile units with differing polarities, exhibits different chemical compatibility depending on the subtle differences in polarity of solvents. Herein, we systematically demonstrate how the chemical compatibility of solvents with the NBR binder influences the performance of ASSBs. Anisole is found to activate the acrylonitrile units, inducing an elongated polymer chain configuration in the binder solution, which gives an opportunity to strongly interact with the solid components of the electrode and the current collector. Consequently, selecting anisole as a solvent for the NBR binder enables the fabrication of a mechanically robust graphite-silicon anode, allowing ASSBs to operate at a lower stacking pressure of 16 MPa. This approach achieves an initial capacity of 480 mAh g−1, significantly higher than the 390 mAh g−1 achieved with the NBR/toluene binder that has less chemical compatibility. Furthermore, internal stress variations during battery operation are monitored, revealing that the enhanced mechanical properties, achieved through acrylonitrile activation, effectively mitigate internal stress in the graphite/silicon composite anode.
KSP Keywords
Chain configuration, Chemical compatibility, Chemical reactivity, Coating process, Composite Anode, Energy Density, Enhanced mechanical properties, Mechanical properties(PMCs), Nitrile rubber, Nonpolar solvents, Polymer chain
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.